CONTINUOUS-IN-TIME BUBBLING AND PROGRESS TOWARDS
SOLITON RESOLUTION CONJECTURE FOR THE ENERGY-CRITICAL
NONLINEAR HEAT FLOW

SHREY ARYAN

ABSTRACT. We show that any finite energy solution of the energy-critical nonlinear heat flow
in dimensions d > 3 asymptotically resolves into a sum of solitons, possibly time-dependent, a
radiation term, and an error term that vanishes in the energy space. As a consequence, when the
initial data has finite energy and is non-negative, we settle the Soliton Resolution Conjecture
for all dimensions d > 3.

1. INTRODUCTION

1.1. Problem Setting. In this work, we study the long-term behavior of solutions to the
energy-critical nonlinear heat flow in dimension d > 3:

Oru = Au + |uP~ (1.1)
u(0, ) = up(x) € HY(RY),

where p := %. This model arises as the negative gradient flow of the following nonlinear energy
functional:
B(u) = 1/ Vulde — —— [ ju(@)PHde (1.2)
Y p+1 Jpa ’ '

which appears naturally in the study of extremizers of the Sobolev inequality and, more generally,
is connected to the Yamabe problem on the sphere via stereographic projection. The local well-
posedness of in H'-norm is classical and was initiated by Weissler in [Wei79, Wei80], with
further contributions by Giga [Gig86], Ni-Sacks [NS85], and Brezis-Cazenave [BC96]. Observe
that the solutions of are invariant under translations and parabolic scaling,

—2

u(t,x) — up(t,z) == AT (t/X%z/N), A>0.

Since the nonlinear energy is invariant under these symmetries, i.e., F(u) = F (u)), the equation
(1.1) is energy-critical. Testing (1.1]) against d,u and integrating by parts we observe the formal
energy identity

T
E(u(T)) + /0 |02 dt = E(u(0)), (1.3)

for each T > 0. In particular, this implies that the nonlinear energy is non-increasing along the
flow. Any function W : R — R solving the elliptic PDE

AW + [WPw =0 (1.4)

is a stationary solution and will often be referred to as a bubble or soliton of (1.1)).
1
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1.2. Statement of the Main result. To state our main Theorem we first define a notion
of scale and center of a non-zero stationary solution. Let S > 0 in R? be the sharp constant for
the Sobolev inequality,

[ullpeer < S|Vl 2
for all uw € H'. Then observe that for any non-zero stationary solution W € H' we have

/yVWdeZ/ WP
R4 R4

By the variational characterization of the Sobolev inequality, the best constant (or equality) is
attained by a positive stationary solution W’, i.e.,

/ W/ |PHlde = SP! (/ VW' 2z
Rd R4

implying that for any positive stationary solution we have

(p+1)/2
> = / VW |?da
Rd

/ VW' 2dz = S~
R4
Therefore, for any sign-changing stationary solution, we have
/ VW |2dx = / VIV 2da + / VW™ ?dz > 2574,
R4 R4 R

In particular, we deduce that any non-zero stationary solution W € H* satisfies
VW7, > 5~

Denote E, := S~¢ as the minimal energy of any non-zero stationary solution of (1.4), and in
general, let E(u) := |[Vul?, for any u € H'. Thus, given any non-zero stationary solution
W : R? — R, we define its scale and center as follows:

Definition 1.1 (Scale of a stationary solution). Let v € (0, E,/2). Then the scale associated
to a non-trivial stationary solution W, denoted by A(W;~), is defined by

AW ;~0) == inf{\ € (0,00) | Ja € R? such that E(W; B(a,\)) > E(W) — o}

Definition 1.2 (Center of a stationary solution). Let 7o € (0, E,/2) and let A(W;~0) be the
scale of a non-zero stationary solution W. Then the center, denoted by a(W;~g) € RY, is defined
as

E(W;B(a(W;70), \(W;v))) = E(W) — .

These quantities are well-defined as we will later prove in Lemma 2.1} Since our main result says
that finite energy solutions of ((1.1)) eventually approach a sum of stationary solutions, it will be
convenient to define their sum, which we will often refer to as a multi-bubble configuration.

Definition 1.3 (Multi-bubble configuration). Let K € {0,1,2,...}. A K-multi-bubble config-
uration is the sum

K
W(z) = ZWj(ﬂﬂ),

7j=1
where W; : R? — R are smooth non-zero stationary solution. By convention if K = 0 then
W = 0. To emphasize the dependence of W on the collection {Wj}le, we will occasionally
write W = W(W), where W = (W1,..., Wk).
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Next, we quantify the distance of a function to some multi-bubble configuration.

Definition 1.4 (Localized distance to a multi-bubble configuration). Given,

(1) some scales &, p, v € (0,00), such that £ < p < v;

(2) amap u:[0,Ty) x B(y,v) — R, where Ty > 0 and o € (0, E,/2);

(3) anon-negative integer K € N and non-zero stationary solutions Wi, ..., Wk with centers
a(Wj;v) € B(y,€) and scales A(Wj;70) € (0,00) for each j € {1,..., K};

(4) collection of radii 7 = (v,v1,...,vg) € (0,00)%*! such that B( (W) vj) C B(y,§)
and smaller scales £ = (&,€1,...,&k) € (0,00)5T such that & < A(Wj;0) for each
jed{l,...,K}.

Then the localized distance is defined as

dwO(U(t),W;B(y,p);ﬁf):ZE(U— W(W)); B(y, ) + E(u; B(y,v) \ B(y,£))
AW
A(W.

A(W;) W) L la(W;) — a(Wi) |\ 272
A +§<A<m> ' 2)

i) AW;)
MNW;) A(W;) &
T Z (dl&t W;),0B(y,£)) + vj * )‘(VVJ))

5]
P dist(a(W4), 0B(a(Wj),vj))

Jj k€IZ;

Minimizing over all the parameters in the above definition yields,

Definition 1.5 (Localized multi-bubble proximity function). Given, y € R p € (0,00), u
[0,T}) x B(y, p) — R, where T} > 0 and ~p € (0, E,/2), define
6’70 (U(t), B(y7 p)) = ln_f: _.d’YO (’U,, Wa B(y7 :0)7 ﬁ? g)

7V7£
where the infimum above is taken over all possible K-multi bubble configurations for any non-
negative integer K, over all parameters 7 € (0,00)%*! and ¢ € (0,00)%*! as in Definition

Since we will fix g later, we drop the subscript involving 7y in subsequent expressions.
With these definitions in hand, we state the main theorem in this paper.

Theorem 1.6 (Continuous Bubbling for NLH). Let u(t) be a solution of (1.1)) with initial data
ug € H'. Let Ty = Ty (ug) € (0,00] denote its mazimal time of existence and assume that u(t)
has finite energy, i.e., supycpo 1, ) E(u(t)) < oo. Then the following hold

(i) If Ty < oo, then there exist a finite energy map u* : R? — R, an integer K > 1, and
points {z* fil C R? such that following holds: let t,, — Ty be any time sequence. After passing

to a subsequence (still denoted by t,) we can associate to each i € {1,...,K} an integer J,
d i . . . i 7 )‘;’,n
sequences a n € RT and A}, € (0,00) for each j € {1,...,J;}, with aj, — ', i — 0 as
n — oo, and NON-2€ro0 bubbles Wi, ..., Wj. such that
N A\ a —

lim ( 22+ l:" + % - kn|> =00 forallj#k, (1.5)

noe NN Ajin Ajin
and

ulty) = u +ZZW< % >—|-0H1(1) (1.6)

=1 j=1
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where the error term oy, (1) — 0 strongly in H'.

(ii) If Ty = oo, then let t, — oo be any time sequence. After passing to a subsequence we
can find an integer K > 0, sequences a;, € R? and Ajm € (0,00) for each j € {1,..., K}, with

. ajal +Ajn
lim ———— =0 1.7
nvoo Vin .7
and non-zero bubbles W1, ..., Wk, so that

. )\jm )‘k?Jl |aj,n - ak,n| o .
nlg]g@ ()\k’n + Mo + om =o0 forallj#k,

)

and

K .
ulta) = 3o Wi(—522) + o (1) (18)

7=1
where the error term oy, (1) — 0 strongly in H'.

Note that the bubbles obtained in the above decomposition may depend on the sequence of
times, which is a similar issue encountered in [JLS25]; however, we can resolve this issue for
(1.1) with a very reasonable assumption.

Corollary 1.7. Let u(t) be a solution of with non-negative initial data ug > 0 and ug € H*.
Let T+ = T (ug) € (0,00] denote its mazimal time of existence and assume that u(t) has finite
energy, i.e., SUPsejo.r, ) E(u(t)) < co. Then the maps obtained in the decompositions (L.6]) and
are unique and independent of the sequence of time.

Theorem [1.6]is a consequence of the following localized bubbling result, in which we denote the
ball centered at x € R? with radius r > 0 as B(x,r) := {y € R?: |2 —y| < r}.

Theorem 1.8 (Localized Bubbling for NLH). Let u(t) be a solution of (1.1)) with initial data
ug € H'. Let Ty = Ty (ug) € (0,00] denote its mazimal time of existence and assume that u(t)
has finite energy, i.e., supycpo 1, ) E(u(t)) < oco. Then there exists o = Yo(Subsepo,r,) E(u(t))) >
0 such that the following holds:
(i) If Ty < oo, then for any y € R,

Jim 8, (u(t): Bly. /T —1) = 0.
Moreover, let t, — Ty be any sequence and let B(yn, pn) be any sequence of balls such that
B(yn, Rnpn) C B(y,/T+ —t) for some sequence R, — oco. Suppose au,, By are sequences with
an, — 0, B, — 00, limy, o BnRT_Ll =0, and

Tim_ B (u(tn); B(yns Bupn) \ Blyn, anpn)) = 0.
Then,

lim &+, (w(tn); B(Yn, pn)) = 0.

n—oo
(i) If T, = oo, then for every y € RY,
lim &, (u(t); B(y, Vt)) = 0.

t—o0
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Moreover, let t, — oo be any sequence and let B(yn,vn) any sequence of balls such that
B(yn, Ravn) C B(y,/tn) for some sequence R, — oo. Suppose aun, [, are sequences with
an — 0, Bn — 00, limy, 00 B R =0 and

Tim_ B (u(tn); B(yns Bupn) \ Blyn, anpn)) = 0.
Then,
lim &, (u(tn); B(yn, pn)) = 0.

n—oo

1.3. Background and Motivation. A fundamental problem in the analysis of nonlinear par-
tial differential equations (PDEs) is describing the long-time behavior of their solutions. The
Soliton Resolution Conjecture asserts that any finite-energy solution to a dispersive PDE asymp-
totically decomposes into a sum of decoupled solitons that are stationary solutions of the un-
derlying equation, a radiation term that behaves like a solution to the linear flow, and an error
term that vanishes in the natural energy norm. This conjecture arose from the numerical exper-
iments of Fermi-Pasta—Ulam-Tsingou [FPU55| and Zabusky—Kruskal |[ZK65|, which provided
evidence that it holds for the Korteweg-de Vries (KdV) equation. Since then, the problem has
been extensively studied for the KdV equation as well as for several other integrable models.
Beyond integrable systems, analogues of the Soliton Resolution Conjecture have emerged across
various areas of mathematics. In general relativity, the Final State Conjecture (cf. [Kla07])
predicts that generic solutions to Einstein’s field equations asymptotically approach a finite
number of stationary solutions or Kerr black holes moving apart from each other. In geometric
analysis, Soliton Resolution arises naturally in the study of gradient flows associated with con-
formally invariant variational problems. For example, pioneering works of Struwe [Str85,Str94],
Qing |Qin95], Qing—Tian [QT97], and Hong-Tian [HT04] have established Soliton Resolution
along a well-chosen sequence of times for the harmonic map and Yang—Mills heat flows.
Motivated by these parabolic works, in this paper we study the energy-critical nonlinear heat
flow in dimension d > 3. Our main result, Theorem [1.6] establishes a continuous-in-time bubble-
tree decomposition for all finite-energy solutions of . More precisely, any solution with
uniformly bounded H'-norm decomposes into a sum of solitons that may vary along different
time sequences, a radiation term that is asymptotically trivial or captured by a weak limit in
H', and an error term that vanishes in the energy space. Moreover, when the initial data is
non-negative, Corollary shows that Theorem implies the Soliton Resolution Conjecture,
since positive solitons have been classified and are unique up to the symmetries of the equation
due to [Oba72,|CGS89|. Therefore, Theorem extends Struwe’s classical compactness result
[Str84], which establishes similar decomposition only along a well-chosen sequence of times, while
Corollary provides the first instance of Soliton Resolution for a non-integrable PDE, beyond
radial symmetry, and without restrictions on the size of the initial data.

To explain the significance of our result, we now review some key developments in the literature.
In the integrable setting, where tools such as the inverse scattering transform are available, the
conjecture is well understood for models including the KdV equation [ES83|, the modified KdV
equation [Sch06], the one-dimensional cubic nonlinear Schrédinger equation (NLS) [BJM18], the
derivative NLS [JLPS19], and, more recently, the Calogero-Moser derivative NLS [KK24].

For non-integrable equations with radial symmetry, where the solitons do not move in space,
the conjecture has been settled for the nonlinear wave equation [DKM12, DKM13, DKM23|
DKMM?22,lJK17,|CDKM22,|JL.23b, JL22|, damped Klein-Gordon equation [BRS17,GZ23|, equi-
variant self-dual Chern—Simons—Schrddinger equation [KKO22|, equivariant harmonic map heat
flow [JL23a], and energy-critical nonlinear heat flow [Ary24].

For non-integrable equations, without radial symmetry, Soliton Resolution is known in one
dimension for the damped Klein-Gordon equation [CMY21], in the neighborhood of a few solitons
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for the energy-critical nonlinear heat flow and the damped Klein-Gordon equation |[CMR17al
IN23|Ish25|, continuously in time for the harmonic map heat flow [JLS25] or along a sequence
of times in dimensions 3 < d < 5 for the energy-critical nonlinear wave equation [DJKM].

In contrast, establishing our main results requires working in any dimension d > 3, where solitons
exhibit only weak decay and no longer enjoy radial symmetry, allowing them to translate in
space and potentially behave pathologically (cf. [Din86,DPMPP11,[DPMPP13]). Moreover, we
impose no restrictions on the size of the initial data, which implies that the nonlinear energy
is, in general, non-coercive, unlike the setting of [KMO06, GR18|. We overcome these difficulties
by introducing new ideas that are robust and adaptable to other nonlinear parabolic flows. In
particular, our modified notion of collision intervals, introduced in Section [3] can be used to
generalize the results of [JLS25] to higher-dimensional target manifolds.

1.4. Proof Sketch. The proofs of the main Theorems and build on the framework
of [JLS25], but require addressing new difficulties that arise in the context of the energy-critical
nonlinear heat flow. This includes,

e Non-coercivity of the energy functional. The lack of a definite sign for the energy func-
tional , especially in non-radial settings, prevents the use of standard energy esti-
mates (cf. [Ary24]). To overcome this, we develop new localized energy estimates and
use profile decompositions to show that there is no concentration of energy outside the
self-similar region, which is a key ingredient in our argument.

o Absence of energy quantization. Unlike the case of harmonic maps between the plane
and the round two-sphere, solitons for do not exhibit quantized energy, thereby
preventing a direct application of the collision intervals from [JLS25]. Nevertheless, the
existence of a uniform positive lower bound on the energy of any soliton allows us to
define suitable collision intervals, which is sufficient to establish our main results.

We first sketch the proof of Theorem which in turn is used to prove Theorem The
argument begins by contradiction. Thus, assume that there is a sequence of times along which the
solution deviates from a multi-bubble configuration. Unfortunately, it is difficult to analyze this
sequence, and so we give ourselves a bit of room and instead analyze a sequence of time intervals
where the solution deviates from a multi-bubble configuration; these sequences of intervals are
called collision intervals, for a precise definition, see .

Thus, consider [a,,b,] C [0,7), a sequence of time intervals where near the endpoints a,, and
bn, u(t) is close to some multi-bubble configuration while inside [a,, b,], u(t) deviates away from
this multi-bubble configuration. We define K as the smallest integer such that, heuristically,
u(ay) is close to a K-bubble configuration. Note that defining K is straightforward when the
energy of each bubble is quantized, as in the case of harmonic maps from S? to S? since we
could simply sum up the energies of each bubble arising in the limit when n — oco. However,
in general, sign-changing stationary solutions could attain a continuum of energies, and thus we
need to define K in an approximate sense; see Definition

Next, the idea is to use the minimality of K to relate the length of the collision interval to the
size of the largest bubble that loses its shape or comes into a collision. In other words, we show
that there exist sub-interval [c,, d,] C [an, by] and a constant C; > 0 such that

|[CTL5 dn” > Ch )‘12nax,n
where /\?nax,n is the largest scale associated with a bubble that comes into a collision. An

application of the elliptic bubbling Theorem on the interval [c,,d,] and a contradiction
argument yield a constant Co > 0 such that

inf Aman [0 g2 > Co.
te[cnydn]
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Combining the above two estimates with ([1.3)) gives

T4 dn
o> [ omEdr= 3 [T o)z Yo 1=,
0 neN" n neN
which is a contradiction, thus completing the proof of Theorem
To go from Theorem to Theorem one key ingredient is to establish no concentration
of energy outside the self-similar region. This property is expected to be true in general for a
broad class of energy-critical PDEs; however, there are no general techniques to establish such
results. We proved this in the radial case [Ary24] using the decay coming from the radial Sobolev
embedding; however, new arguments are needed in the non-radial setting. When Ty < oo, we
leverage the L°°-smoothing estimate to control the nonlinear term to establish that no energy
lies outside the ball B(y,+/Ty —t). Surprisingly, the case when T} = oo is harder since L
control on a non-compact domain does not yield higher integrability. Here we observe that,
given ¢ € C'™° we have
1/ 2,2 _/<1 2 L +1>2 b +1 42
|Vul“¢p*de = |Vul |ulP™ | p°dx + |u[PT g de.
2 R4 Rd 2 D + 1 P + 1 Rd
Therefore, to show that no energy H! energy lives outside the ball B(y,/t) for any y € R, it
suffices to show that the localized nonlinear energy and the LP*!-norm vanish in this region.
By localizing , it is not difficult to show that the first quantity vanishes. On the other
hand, the vanishing of LP*! norm is quite involved and, in particular, relies on a deep result of
Ishiwata [Ish18], see Lemma
Now let ¢, — T be any sequence of times. From Theorem (1.6, we see that wu(t,) approaches K
multi-bubble configuration on either B(y,/T} —t) when Ty < oo or B(y,/t) when T, = co.
In particular, K multi-bubble configurations depend on n. To obtain a finite number of bubbles
(independent of n) as in Theoremthat are asymptotically orthogonal in the sense of and
, we apply the Compactness Theoremto each bubble obtained in the sequence of multi-
bubble configurations arising from Theorem and build a new bubble tree configuration by
selecting bubbles such that and are satisfied. The resulting multi-bubble configuration
then satisfies all the requirements of Theorem thus completing the proof.

1.5. Notation and Conventions. We use the following conventions in this paper.

e We denote Strichartz spaces LY L% where the subscripts indicate LP integral in time and
L4 integral in space. In general, we will use Sobolev spaces instead of LP spaces.

e Some constants that will occur frequently include p := %, ford > 3 and E, := ||W||i,1
where W is a non-zero positive stationary solution of . Furthermore, the inequality
A < B means that A < CB for some constant C' > 0, while A ~ B means that A < B
and B < A.

e An open ball is defined as B(z,r) = {z : |z — x| < r} while a parabolic ball Q,(z,t) :=
B(x,r)x (t - r2,t) for any z € R, ¢ > 0, r > 0. For convenience, Q; := B(0,1)x(—1,0).

e We will often localize several quantities over the course of this paper. To simplify nota-
tion, first, we define the energy densities relevant to the energy-critical heat flow

() [Vul*  Juft!
e(u) := — ,

2 p+1
where u : R x R — R. Given, A C R? we measure these quantities localized to this
region

and e(u) := |Vul|?,

E(u; A) ::/Ae(u(t, x))dz, and E(u; A) ::/Ae(u(t,w))dx.
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Sometimes the domain A might be time-dependent, in which case it is easier to localize
using cut-off functions. To that end, given any ¢ € C*°(R?) we define

Ey(u) := /Rd e(u(t,z))¢*(z)dr, and Ey(u) ::/ e(u(t, z))¢*(z)dz.

Rd
e Standard cut-off function will be denoted by y € C°(R?) where x = 1 on B(0,1) and
X = 0 outside B(0,2). Rescaling of y, will be defined as xr(z) := x(z/R) for any R > 0.

1.6. Acknowledgments. The author is grateful to Andrew Lawrie for proposing the problem
and for many valuable discussions, to Tobias Colding for his constant encouragement and invalu-
able advice, and to Yvan Martel for insightful conversations. This work was partially supported
by NSF DMS Grant 2405393.

2. PRELIMINARIES

2.1. Properties of Stationary Solutions. In this section, we will recall some standard prop-
erties of non-zero solutions to , show that the Definitions of scale and center are well-
defined, and establish some natural consequences of these definitions. Let W : R? — R be a
non-zero finite energy solution of (1.4). We will show that the definition of its scale A(W;~o)
and center a(W;~) are well-defined.

Lemma 2.1 (Center and scale). Let vo € (0, E./2), let W : RY — R be a non-zero stationary
solution, let A\(W) = N(W,~0) be its scale from Definition and let a(W) = a(W,v) be a
choice of center from Definition . Then AN(W) is uniquely defined and strictly positive, and
a(W) is well-defined. For all (b, ) € RY x (0,00) we have

A <W <;b>> = A\(W)u, and ‘a (W <;b>> - a(W),u’ <MW  (2.1)

Proof. Since E(W; B(0,R)) — E(W) as R — oo, it follows that the scale A\(W) is well-defined.
If A(W) = 0, then there exist a,, € R? so that for n > 1 we have

E(W;B(an,1/n)) > E(W) — 0. (2.2)
If n # m, the B(an,1/n) N B(am,1/m) = 0. Indeed, otherwise
E(W) > E(W; B(an,1/n)) + E(W; B(am,1/m)) > 2E(W) — 2y,

whence E(W) < 2yy < FE, which contradicts that W is non-zero. Therefore, {a,}%; is a
Cauchy sequence in R? and a, — as. Passing to the limit in (2.2) gives a contradiction. To
see that center a(W) is well-defined, take A\,, = A(W) and a,, € R? such that

E(W; B(an, M) > E(W) — 0.

As before, we conclude that no two disks {B(an, \,)}22, can be disjoint. Thus, a, € R? lie in
a compact set and we may assume that a, — a. as n — oo, which is the desired center. We
note that A(WW) is uniquely defined, but a(W) is defined only up to a distance of 2A(WW). The
properties are immediate from the definitions. O

Lemma 2.2 (Decay of stationary solutions). There exists o € (0, E,/2) with the following
property. For any 0 < v < v and any non-zero stationary solution W : R® — R the exterior
energy decays at the following rate:

(VR B(a(W:): RXW, ) < 2o

for all R > 1 with constant C = C(d,W) > 0.
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Proof. Without loss of generality assume that a(W;~) = 0 and A\(W;~) = 1. Then using Lemma
2.1 in [Pre24] we get precise asymptotic of [VIWW|, which imply the desired estimate since

— oo d—1 1
E(W;RY\ B(0: R :/ vw%mg/ ! dr < .
( \ ( )) B(O,R)C | ’ R (1 + T)Zd—? Rd—2

0

Lemma 2.3 (Energy of multi-bubbles). Let (4, pn, M) € R? x (0,00) x N. Let {W1,..., Wi}
be a collection of non-zero stationary solutions, and for each j € {1,...,M} let (b, finj) €
B(Yn, pn) % (0,00) be sequences such that

—1 M
: fing | Png | |bng — bn,k\) [in.j
lim + + + : —0 923
B L; <“"”“ g Hng ; dist(bnj, B(yn, pn)) (2:3)

Then,

. = ‘_bnl _bnM
lim E(W (Wi (———),..., Wy(——— s Pn
”LH;O ( ( 1( Hn,1 ) M( Hon, M )) y ﬂ ) Z;

Proof. 'To simplify notation within the proof, we use the shorthand W,, ; = W; ( ;:"JJ ) Expand-

ing the energy, we obtain

M
E(W(Wn,la---awn,M) ynvpn ZE W, ,]aB ynvpn)) +22/( )(VWn,J an,k)dx
]:1 B YnPn

J#k
By the asymptotic orthogonality of the parameters in ., Lemma 2.2} - 2[ and the invariance of
H' norm under translation and rescaling we get

E(Wn,ﬁ B(yna Pn)) = E(Wn,j) + On(l) = E(WJ) + On(l)
as n — 0o0. On the other hand, if j # k, then

‘ / (VW - Vka)dw‘ < /|VWn,j||VWn7k|dx — o(1)
B(yn Pn)
by (2.3)). Combining the above two displays, we get the desired energy expansion. O

2.2. Properties of the energy-critical heat flow. In this section, we will recall the local
well-posedness theory for (1.1)) and then describe the singular set in the case of finite-time
blowup. The following lemma adapts Theorem 1 from [BC96| to our setting,

Lemma 2.4 (Local well-posedness). Assume d > 3. Given any ug € H*, there exist a time
Ty =Ty (uo) > 0 and a unique function u € C([0,T4], H') with u(0) = ug, which is a classical
solution of (1.1) on (0,T4) x R™. Moreover, we have,

(1) smoothing effect and continuous dependence, namely
() = (@) g1+ 2 u(t) = v(®)][zee < C lluo = voll g1 »

for allt € (0,T4) where Ty = min {74 (ug), T4 (vo)} and C' can be estimated in terms
of [[uoll g1 and l[vol| 2
(2) limy_so t=2/4||u(t)|| L = 0.
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Remark 2.5. Originally, [BC96| proved local well-posedness in L7 spaces, for solutions to
with Dirichlet boundary conditions. However, the same argument works on R% with H! instead
of LP*1 space. Observe also that due to the parabolic L>-smoothing above and the fact that our
main results are about the asymptotic behavior of we can assume without loss of generality
that the initial data ug € H' N L. See, for instance, Proposition 2.1 in [CMR17b| and the
subsequent remark for discussion about the precise gain of regularity for solutions of .

When T < oo, we will locate the points where energy concentrates. To that end, we first recall
a parabolic e-regularity result established in [GR18|] that was proved in dimension d = 4, but
whose proof is the same in any dimension d > 3.

Lemma 2.6 (Parabolic e-regularity). Given any k € N, there exist g > 0 and a constant C' > 0
such that the following holds. If u is a solution of equation (1.1) on Q1 and satisfies

&= lull e (mnns)@u < €0
then u is smooth on @ with bounds
sup |DFu| < Ce.
1/2
As a consequence, we can define the set of regular and singular when 71 < oco.
Definition 2.7 (Regular and Singular Points). Let R C R¢ denote the set of regular points,

where

5
R = {1: e R%: 3r > 0 such that ||u||L§°<H;ﬁL§)(Qr(J:,T+)) < 50}

where Q,.(z,T,) = B(x,r) x (Ty —r?,T¢) and gg > 0 is the constant appearing in Lemma
Let S = R%\ R denote the set of singular points.

Next, we analyze the singular set S.

Theorem 2.8. Let u be a solution of (L.1) such that T} < 0o and supcjo r,) E(u(t)) < .
Then the following holds.

(1) There exist a non-negative integer L > 1 and a set of points {x1, ..., 21} C R? such that
S=A{r1,...,xL}. '

(2) If u* denote the weak limit of the flow, i.e., u(t) — u* € H* ast — Ty. Then u(t) — u*
strongly in HL (R?\ S) ast — Tj.

Proof. Given any Borel set A C R? define the measure,

p(A) = limsup/A(|Vu(t, )2+ Ju(t, z) [P da

t*}T_'.

The finite energy assumption sup;cjo r, ) E(u(t)) < oo implies that u(R?) < co. Next, observe
that by definition, if 29 € S then for every r > 0 there exists t, € (T, —r2,T,) with

2
/ (IVulty, 2)? + [ulty, 2)[P*)de > 20,
B(zo,r) 2

Taking a monotone decreasing sequence r,, | 0 asn — oo and the lim sup in the above expression,
we see that

v S

u({zo}) > Tim u(B(a, ) >
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Taking any collection of points {z;};cs we see that
2M(Rd)

IS <
50

< 00

This proves that S consists of a finite number of points in R?. The fact that L > 1 follows by a
contradiction argument; suppose that L = 0, then R = R in which case v € C*®(R%x[0,7]). In
particular, this implies that supo<;<p, /=D ||lu(t)| < oo allowing us to extend the solution

u(t) to some larger time 7" > T contradicting the maximality of 7% € (0,00). Thus we have
proved item (1). For item (2), since u(t) € H' is a bounded sequence in H', it weakly converges
(up to a subsequence) to some u* € H' as t — T,. Let x € R. Then by deﬁnltlon, there exists
r > 0 such that u € Ck(QT/Q(x,T+)>, for every k € N. Therefore, for t € (T, — r?/4,T,), the
sequence of functions wu(t) is smooth on the ball B(xz,7/2). Applying Arzela-Ascolli theorem,
we see that u(t) — u* in C*(B(x,r/2)) as t — T for every k € N. The proof of item (2) now
follows from a standard covering argument and the Sobolev embedding. O

2.3. Energy Estimates. In this section, we establish some energy estimates for the energy-
critical heat flow and use them to propagate smallness of energy for a short-time. Integrals
in time and space are with respect to the standard Lebesgue measure, which we omit in the
following Lemma for convenience.

Lemma 2.9. Let u(t) be a solution of (T.1) with initial data ug € H'. Let Ty = T (ug) > 0
denote its maximal time of existence. Consider I C [0,Ty) and ¢ € C°(R?). Then, for any
ti,to € I and t1 < ty we have

Eg(u(ta)) — /: /R , (Opu)?p? — 2 / h / (Vu - V¢)posu, (2.4)

Ey(u(te)) — Eg(u(ty)) = —Q/tQ Rd(atu)2¢2+2/t /Rd ulP~Lu(0pu) P
—4/t2/ Vu - Vo)pou. (2.5)

Furthermore, we have the following estimates,
1/2

Butute) ~ Botute) < [ [ @re vz ([ [ onre?) " ([ [ iwurwan)

(2.6)

|Eg(u(ta)) — Eg(u(tr))| < 2/;2 Rd(atu)2¢2+ /1t2/du|2p¢2>1/2 (/: /Rd(atu)%z)l/z

1/2

+4</t:2 /Rd(&gu) )1/2 (/tt/ vl |v¢|2> , (2.7)

1/2

Botul) - Bty < [ [ 1vuproap 2 ([7 [ d\u|2p¢2)1/2 ([ [ o ¢2) ,

+4</t2/ () ¢2>1/2 (/tt /}Rd |vu\2|v¢|2>1/2. 2.9)
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Proof. The first identity . ) follows from

to to
f, fuetutntast= [ ] (9u- Vo~ utud) e
d

to
/ / (div(Vudyu) — (Au + |ulP~ u)dpu) p*dadt

to to
/ (Opu)?p*dzdt — 2 / / (Vu - Vo)pdyudadt.
t1 Rd

The identity (2.5) can be derived similarly. The remaining inequalities (2.6} ., ., and .
follow by apphcatlons of Cauchy-Schwarz and Young’s inequality.

Lemma 2.10 (Short-time propagation of small energy). Let u(t) be a solution to with
initial data w(0) = ug € H'. Let Ty = T} (ug) denote its mazimal time of existence and assume
that supycpo ) lu@®) |z < oo. Let 0 < o < 7 < T4 be two sequences of times such that
OnyTn — T4 as n — o0 and limy_oo (70, — o) = 0. Let W be a stationary solution (possibly
zero) and let 7, > 0 be a sequence such that lim, (1, — 0)r; 2 = 0. If

lim E(u(oy) — W;B(0,2ry,)) =0,
n—o0

then
lim E(u(r,) — W;B(0,r,)) = 0. (2.10)

n—oo

Next, let €, > 0 be a sequence with £, < r, for all n and such that im, o (7, — op)e,, ~2 — (.
Let L € N, L > 1, {x}k, C R? such that that the balls B(wy,e,) are disjoint (md satisfy
B(xg,en) C B(0,1y,) for eachn € N and ¢ € {1,...,L}. Moreover, |xs— x| > be, when € # m.
If

lim E(u(o,) — W; B(0,2r,) \ UL, B(zs,,/2)) =0

n—oo

then
lim E(u(r,) — W; B(0,7,,) \ Ul B(x4,€,)) = 0. (2.11)

n—oo
Proof. We prove (2.10)). Set v(t) := u(t) — W. Then,
o — Av = |uP~tu — [W|PTIW.
Then using the same idea as in (2.8) with a smooth cut-off function ¢,, € C>*(R%) supported on
B(0,2ry,) we get

_ _ T — o) 1/2 n 1/2
Ey(v(ma)) S E(v(on); B(0,2ry,)) + g </ /Rd |0u|*dx dt> (2.12)

Tn 1/2 Tn
+ </ / |8tu|2dmdt (/ / |u|2pdxdt)
on JR4 on JB(0,2r,)
1/2 Tn
</ / |Oyul? dxdt (/ / \W|2pdxdt>
B(0,2ry,)

By L°°-smoothing in Lemma n and using hmn_mo(Tn on) =0 we get

/ / |u|?Pd dt < " 0, asn — o0.
B(0,2ry,)

1/2

1/2
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Next, using the decay of any stationary solution W from Lemma 2.1 in [Pre24] and lim,, o0 (7, —
on) =0 we get

/ / W *Pdz dt < (1, — o) — 0, as n — c0.
on JB(0,2ry,)

Finally, using the energy identity (|1.3)

Tn T+
/ / |0pu)?da dt < / / |Oyul?dzdt — 0, as n — oco.
on JRA on R4

This shows that all the error terms in are asymptotically small, and thus smallness of
the energy E(v(oy,); B(0,2r,)) can be transferred to smallness of E(v(r,); B(0,7,,)) by using the
fact that ¢ =1 on B(0,r,).

The proof of starts with but uses a different cut-off function, which is supported on
B(0,2r,) \ UL, B(x4,e,/2) such that ¢, = 1 on the region B(0,7,) \ UL B(xy,e,), satisfying
the bound |Vé,| < e, !. Then, one can control the error terms following the same reasoning as
above. 0

2.4. Concentration properties of the heat flow. The goal of this section is to establish a
crucial fact that energy cannot concentrate outside the self-similar scale, which is expected in
type-II blowup scenario. Similar results are known for many other PDEs, for instance, energy-
critical nonlinear wave equation [DJKM]|, wave maps [CTZ93}|STZ92|, and harmonic map heat
flow [JLS25]. Due to the lack of finite speed of propagation, we cannot use the techniques
developed for hyperbolic equations, while the lack of a coercive energy for the energy-critical
heat flow prevents us from using the arguments developed for the harmonic map heat flow
when T = oo.

Lemma 2.11 (No self-similar energy concentration in the finite-time blowup case). Let u(t)
be a solution of with initial data ug € H* such that the mazimal time of existence T, =
T4 (ug) < oo and supycp 1) E(u(t)) < oo. Let xg € S be a singular point as in and let
r > 0 be sufficiently small such that B(xzg,r) N (S\ {zo}) = 0. Then,

lim E(u(t); B(zo,7) \ B(xg,a/Ty —t)) = E(u*; B(zg,1)) (2.13)

t—>T+

for any a > 0. Here, u* denotes the weak limit of the flow, i.e., u(t) — u* ast — Ty. In
particular, there exist Ty < Ty and functions v,§ : [Ty, Ty) — (0,00) such that limy_,7 (v(t) +
£(t)) = 0 and the following hold

i (re + Yt =0, i Bu(t): Blan,v(8) \ Blao,€6) = 0. (214

Proof. The proof method is the same as in |[Ary24]. The key point is L*°-smoothing and the
fact that T < oco. Consider a smooth radial cut-off function ¢ € C°(B(xq,2r2) \ B(zo,71/2))
such that ¢ = 1 on B(zg,r2) \ B(xg,7r1) and ¢ = 0 outside B(xzg,2r2) \ B(zo,r1/2) for any
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0 < 71 < ry. Using (2.5) we see that for each 0 < s < 7 < T+ we have,

|By(u(r) — Bou(s))

T 1/2 T 1/2
+( / / (8tu)2q§2lv¢2d:cdt> ( / / yvudedt)
s JRd s JRA
T ) 1 ) T )
5/8 Oyl + / ;[ iz / 0|2t

T, — §)1/2 ™ (2.15)
+ B2 owar
1 s

T+ T
< / 1vull22 dt + v/log(Ty/3) /||atu||igdt

S S

T, _ $)1/2 T,
+ B [ oz,

Let s — T, then the above estimate implies that lim,_,1, Eg(u(s)) exists. Now observe that
for some 7’ such that 0 <7’ < & < r; we have

Bofu(r) = Byt = [ (o) ~s(u )6’

Since, u(t) — u* strongly in HI{)C(Rd\S), the RHS in the above display tends to zero as 7 — T,..
Thus choosing r;, = a(Ty — s)'/? and 7y = A(T; — s)*/? in the definition of the cut-off function
¢, where 0 < a < A and sending 7 — T in (2.15) we get

~ B Ty Ty 1 Ty
Bofa) = Bowlo)| S [ 100 dt + i/ [ N0l ) [ 10wl et

Therefore

lim Ey(u(s)) = 0.

$—>T+

Thus, for any 0 < a < A we have

lim E(u(t); B(zo, A\/Ty —t) \ B(zo,a/Ty —t)) = 0. (2.16)

t—>T+

If instead, we set 71 = a(Ty — s)%/? and 79 = r in the definition of the cut-off function ¢ where
r > 0 small enough such that B(xg, ) does not contain any other bubbling point, then we have

- B Ty T 1 Ty
Botu') = Bofule)| £ [ 100l + Vios T/l [ ot + [ [ 10wl

Therefore, we have

Jim | Bolu?) = Eofu(s))] =0. (217)
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Denote A(s) = {x € R? : ay/T} —5/2 < |v — 29| < a/T} —s} and A(r) = {z € R? : r <

|z — 20| < 2r} then

E(u(s); B(zo,7) \ B(zo,a\/Ty — 8)) — E(u*; B(zo,7))

— Bofu(s) = Balw') — [ eu(e)edo+ [ e(u)ods — Blw's Blanay/Tr =)
{p#1} {p#1}
= By(u(s)) - By(u) - /A  eluletds - /A )@

+ / e(u”)¢hd + / e(u")¢2da — B(u*; B(xo, ay/Ty —3)),
A(r) A(s)
which implies that
‘E(u(s); B(xg,7) \ B(xg, /Ty — 8)) — E(u*; B(xo,r))‘
S | Es(uls)) — Eg(u)| + E(u(s); B(zo, an/Ty — s) \ B(wo, ay/T4 — s/2))

+ E(u*; B(zo, /T — 5)) 2(e(u*) —e(u(s)))dz| .

By ([2.17), (2.16), and strong convergence of u(t) to u* in HL_(R?\ S), we see that each term
above tends to zero as s — 7. Thus,

lim E(u(s); B(wo,r) \ B(zg, /Ty — s)) = E(u*; B(xo,7)).

S—)T+

This completes the proof of (2.13). One can easily construct the curves v and £ such that the
first equation in (2.14)) holds. This, along with (2.13)), implies the second equation in (2.14]). O

Showing the same fact in the global case is significantly more challenging. Unfortunately, we
are unable to use energy estimates as in the harmonic map heat flow case in [JLS25| since
the Dirichlet energy is not the natural energy associated with . However, we can deduce
nontrivial information if we apply energy estimates to the nonlinear energy.

Lemma 2.12 (Nonlinear energy dissipation in the global case). Let u(t) be the solution to (|1.1)
with initial data ug € H', Ty = Ty (ug) = 0o and finite energy supyq E(u(t)) < oo. Then for
any y € R? and any o > 0 we have

lim E,fult]) =0,

t—=T
where ¢ =1 — x(|z — y|/av/t) for a smooth cut-off function x € C(B(0,2)).

Proof. Let € > 0 be small enough. Then we can find Ty = Ty(e) > 0 such that,

00 oo 1/2
(/ / |3tu|2d1:dt> <e.
To Jo

Next, choose T7 > T so that for all T > T}

E(u(To);R*\ B(y,aVT/4)) <&
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Fix any such T' > T. Let ¢(z) = 1 — x(|z —y|/a/T) where x € C2°(B(0,2)) is a smooth cut-off
function. Then using (2.6))

|Eg(u(T)) = Eg(u(To))]

1/2 T
/ (Dpu)?pdx + 2 </ / |Vul|?| V¢l dxdt) (/ / ¢2|8tu|2dxdt>
Ty Rd To Ty JRd

<2 +7<016
o

1/2

for some constant C; that depends on o > 0 and sup;>o E(u(t)) < co. Therefore, we get
| BylulT])| < |EglulT]] - EglulTol]| + | EslulTy]]| < 2C1e,

which implies

A Eolu(T)] =0,

as desired. O

Since the nonlinear energy is not coercive, the above estimate is not very helpful as it does not
control the H' norm. However, as explained earlier, due to the following identity

_ 2
Eo(u) = 2By(u) + = | JufHetds, v e C(RY),

we observe that if the LP*! norm vanishes outside the region B (y,a\/t) for any y € R% a > 0
then using Lemma [2.12] n one can conclude that lim; o E(u(t);R?\ B(y, av/t)) = 0. Thus, we
first show the following lemma.

Lemma 2.13 (No self-similar energy concentration in the global case I). Let u(t) be the solution
to with, initial data ugp € H', Ty = oo and sup;>o E(u(t)) < oo. Then for any y € R? and
any a > 0 we have

lim lu[Pdz = 0. (2.18)
2T Jjz—y[>avi

Proof. Let ¢p(z) =1—x ('27%') where x € C°(B(0,2)). We will show that

lim lu[PT¢?da = 0,
=Ty Jrd

which will give us the desired result. By translational invariance, assume without loss of gener-
ality that y = 0. Recall Theorem 1.4 in [Ish18|, which states that

tgr’ﬁ distzpt+1(u(t), Foo(ug)) = 0, (2.19)
where
B (1) = { SO0 2R i (3 (-— ) ‘ n e NU{0}, ¢/ solve (I4), 3 E(yy) < E(uo)}.
j=1 J=1

As a consequence, if the (2.18) is false, then there exist an initial data ug € H' and & > 0 such
that for some sequence t,, — T we have

/x|>d\/7 ultn) 7" dz 2 8> 0. (2.20)
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Note that for a € (0,a], R?\ B(0,@/t,) C R\ B(0,a+/f,) and therefore for any a € (0, a] we
have

/x|>a¢r u(ty)PHidz > 6 > 0. (2.21)

We will show that there exists a* € (0,a] such that (2.21) implies that the nonlinear energy
satisfies

lim Ey [u(ty)] >0,

n—oo

where ¢,,(2) = 1 — x(|z|/(a*/%,)) which will contradict Lemma [2.12]
As a starting point, using (2.19) we obtain that (up to a subsequence) and for n > 1, the
following decomposition holds

n(@ =)+,

Mw

]:1
such that

(1) K > 1 since otherwise limy, o [|7n||pp+1 = 0, which would contradict (2.20). Further-
more, K € N can be chosen to be independent of n by possibly passing to a subsequence
since the sequence has finite energy,

(2) each profile ¢/ is a non-trivial stationary solution,

(3) the parameters are orthogonal in the usual sense
A\l )\j 7t xj 2
—;L )\—7 ’”7,71’—>oo asn — 00, 1% j,

and up to a subsequence, we can order the scales 0 < AL < \2 < ... < \K
(4) the error satisfies ||ry, || p+1 — 0, as n — oo,
(5) and we have the following Pythagorean expansion of various norms,

IVults)7z = Z IV (22 + 1VrallZe +0n(1),  fulta)|Zon = Z 1971701 + 0n(1).

7=1 7j=1

Denote u, = u(t,) and ¥, = (Aj)i W (My(z — ) for each j € J := {1,..., K}. Consider
dividing the index set J into J = J1 U J2 U J3, where

Ji={je{l,...,K}: hrgianM*:Lj € A}

where A; = {0}, A C (0,00) and Az = {oo}. Consider the cut-off functions

oul) =1-x (02). A =1- w0 =1-x <M>

where ch‘: )\%:):%, T = ozA%\/tTL, and « € (0, @] will be fixed later depending on the scales of the
profile M.
Then, from ([2.20) we deduce that there exists at least one bad profile with index jg € {1,..., K}
such that

_ 0
PP Az > — 2.99
/wlzwa| | “K (2.22)
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Note that j° € J; U J> since otherwise the integral above would vanish as n — oo, contradicting
(2.22)). Expanding the nonlinear energy, we get

E¢n Up) Z Eqsn wj + Z Ajrn+ Eg, [Tl
Jj=1 itk
where A;;,, contains all cross-terms between distinct profiles and the remainder 7,, which up
to o, (1) errors are of the form

l,, _/ (Vi - VR etde, I, ::/ (Vi - Vry)p2de,
Rd

l, = / WP g2 d, IV, = / i P gl R da
R4 R4

for j,k € {1,...,K}, j # k. The terms I, lll, vanish due to the asymptotic orthogonality of
parameters associated to the profiles v7, and wfj. Thus, we estimate the remaining terms using
integration by parts and Holder’s inequality with % + % + Iﬁ =1 to get

IVl < 13112, 12 Lot — O,
Hln|=‘— / [ [P 2 + 2 / (V4 - Vén)rniuda
R4 Rd

S peallralloss + IV 2V Gl o llrall oss — O

as n — 00. The finiteness of ||[V¢y ||z~ can be ensured by choosing a log cut-off function, see
for instance Lemma 3.8 in [FG20]. By the orthogonality of parameters and the vanishing of the
error term in LP™! norm, we have A; ., = o,(1) and Eg, [r,,] > —0,(1). Combining with (2.12)),

) >ZE¢H | —on(1)
> ZE@LW + D Ep[Uh]+ D By, [0h] — 0n(1)

JETL JET2 JET3
> E; + Es + E3 —0,(1),

where E; := Z]e 7. L, [W@] for ¢ = 1,2,3. We estimate each term carefully. First we analyze
two sub-cases J; = jl U J7° where
TP =1{j € F:liminf|d| < oo}, JX={j€ Jo:liminf|c)| = oo}
n—o0 n—oo

Therefore, up to a subsequence when j € J?, || is bounded while |c},| — oo when j € J.
Thus,

JET
A [Veh2 Pt
_jE;b/Rd< p+1>¢"d +§/ ( p—i—l)d)ndx
(VI [* | P! (Vg7 [* [ P!
—ezj:/ugd( p+1) (@) dx+]§w/ ( p+1)(€])
S

—E, 1
> LB, — 0,(1),
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since when n — oo by the dominated convergence we have

V|2 3|+l , , E

712 J|p+1 . L . E* .

2 p+1
Here we used the fact that

a
jeJ = lim |z+,"|:oo,VzERd

n—00 T%
jeJr = lim / 7 [P () 2dz < [l |7 lim (r))*=o.
— 00
Next, for profiles in Jo, we analyze two sub-cases Jo = jQ U J5° where

={jed: hmmf |\/t>| <o}, Jr={je: hmmf |\/t>| 00}

As a consequence, up to a subsequence, |c,71| is bounded when j € ij . On the other hand,

Al =N, th - lzal y o as n — oo when j € J5°. Therefore, we get
Vin 2

= > By, [v])]

JET2
Vin|? g Vi 2 J [p+1
EZ/‘<'¢' 'wl1>%d*§3/ Cz¢| Wl1>¢ﬁ$
.76._72 Rd p ]Ejoo p
, 1B,
> — Vi 242d /v]vnynd_i_‘z (1
_d%/w’ W Pohde — Z Wl - Vn)lé = —0,(1) 02
1 / | VIIE.
=4 VoG’ IR ~on(1)
a jegp L /\] Vi Jrd j2<|z1d | <rd, d
> / VI P dz — Ca® M (L;) | + 1T\ E on(1),
d Jel>alL q
JETY

where in the second inequality we test ((1.4) with ¢%¢% to get

1 , 1 . 2 . .
— IPtg2de = —— [ |Vl Pe2d / I (Véy, - Vb )d
and to estimate the nonlinear energy for j € J5°, we use

/ |¢g;yp+1¢idazg/ o |¢J’|P+1dz§/ [Pz = 0, as n — oo
R? |2t-ch|>r /2 21>kl /2

which implies that

\WPijz < N -
g2de =Y EWI]+ [ e )2 xi)dz
JE;Z / < p+1 JjEIZ® /Rd
_ 15
- d

E, —on(1).
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The final inequality in (2.23) follows by controlling the error term introduced by the cut-off
function for proﬁles with index j € ij ,

1
Gt (Vo - Vo )da| S
D+ 1 / e " ) Oé)\] \/> rd j2< |z | <rd
S (@ VE) TV (o 97 | oo S (L) MV || poo |97 || oo
Recall that for j € J2, lim, oo NV = L; where L; € (0,00) (after possibly passing to a
subsequence). Denote L* = max;c 7o Lj and L, = minjej; L;. Choose € > 0 small enough such
that €2/L* € (0,&) and for each j € J¥ we have

[V |[¢]dz

E(@7; R\ B(0,€%)) > E;

Set a* = &2/L* then for each j € jzb we have

/ VY2 dz — C(aL;)* ! > / VI 2dy — Oe2d2
|z|zaL;

|z|>aL*

> / IVl [2dz — Ce?d2
|2|>e2

where C' > 0 is a constant depending on sup;> E(u(t)) < co. Therefore, we have

123, _ (1-2d—2 |~72°°|E* .
Eg_dZ/ [V [Pz — Ce*72 4 =2 on(1)

jeds |z|>aL;

> "Z;’E —op(1).
Finally,
= Bo W3]
JET3
VYRR [P
];3/1\@1 ( p_|_1 >¢nd$
=3 Z / [h P g da Z / (Vabi, - Vb )1b)
JET3 JGJ
> A qﬁn > —o,(1).
25 2 JulvetPade gz o

Therefore, combining the above estimates, we get
E¢n [un] >E; +Es+E3 — On(l)
- | | 2]
~F,
=24 " 1d

T+ 1P| 2
> — E, —o0,(1)

W2l 5 — 0n(1)

E,
> — —on(1
> o= oall)
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since the bad profile has index jo € J1 U Js. Therefore
E

Eg, [u(tn)] = Z; — on(1),
which implies that
lim Eyfu(t)] = lim Ey, [u(t ]>E*>0
Jip Bolu(®)] = Jim_ o, ultn)) 2 75 > 0.
contradicting Lemma [2.12 O

Lemma 2.14 (No self-similar energy concentration in the global case II). Let u(t) be the solution
to (L)) with initial data ug € H, Ty = 0o and supys E(u(t)) < co. Then for any y € R? and
any o > 0 we have

lim |Vau(t)|*dz = 0.
t—o00 |x—y|20¢\/i

Proof. Let ¢ = 1 — x(|z — y|/a/t), where x € C>°(B(0,2)). Then since

_ 2
Ey(u) = 2E4(u) + p—+ T Lo |u|p+1¢2dx,

by Lemmas and we see that

lim |Vu|*¢?dz = 0.

t—)T+ Rd
Therefore
lim |Vu|?dz = 0,
t—Ty ‘x_ylza\/i
as desired. O

2.5. Sequential Compactness. In this section, we establish an elliptic compactness Theorem
for Palais-Smale sequences for critical points associated to the equation . This result is
quite classical with connections to concentration-compactness in analysis [Str84] and the Yamabe
problem in differential geometry [BM10].

Theorem 2.15 (Elliptic Bubbling). Let u;, : R — R be a sequence of functions in H' such
that

limsup/ (Vug? < oo, lim pgl|Aug + [ugP " ugl[2 =0
k—oo JRA k—o0

for some sequence py, € (0,00). Then given any sequence yj, € R?, there exist a stationary solution
Uoo € H? (possibly trivial), an integer m € N, a constant C' > 0, a sequence Ry, — 00, a collection
of elliptic solutions W1, ..., Wy, each equipped with translation parameters {z}}™ | € B(yk, Cpx)
and scales {\;}™ | € (0,00) such that

lim E(up — oy — (2N B
el (ur, —u ZWJ( 3./ N.); B(yks Ripr)))

=1
j jj’ i g2\ ! j (2.24)
XA - " A
+Z(;+§+Wf?q i Q. i
i\ N Ay Ay ‘=1 dist(xy, 0B(yk, Cpr))
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Denote
S = {z € R?: liminf lim lup[PHde > &},
k=00 T30 B(a,r)NB(yr.Cpr)
for some & = &(n). Then S = {z',...,2'}, where I < m. Furthermore,

u (Y + pr-) = Uoo weakly in H'(B(0,C))

vo i (2.25)
uk (Y + pr) — Uoo strongly in Wio7(B(0,C) \ S).

For eachi € {1,...,m} there exist a finite set of points S;, possibly empty and with card(S;) < m,
such that

ug(zh + Ni) — W, strongly in Wf}f(Rd \'S)). (2.26)
Finally, there exists an integer K > 0 so that
lim E(ug; B(yg, Repr)) € [KEx, (K + 1)Ey). (2.27)
k—o0

Remark 2.16. The above Theoremis similar in spirit to Theorem 1.1 in [Top04] for almost
harmonic maps from S? — S2. The key difficulty in establishing the above theorem stems from
the fact that the natural energy associated with does not have a definite sign. Note that,
unlike in the harmonic map case, we cannot expect to obtain L°° neck-estimates since WQ’Z(]Rd)
does not embed into C°(RY) when d > 4. Lastly observe that as a consequence of the above

theorem, we have lim,, o0 6 (un; B(yn, Rnpn)) = 0 for any sequence 1 < R,, < R,.

Proof. See Sections 2 and 3 in [Dul3|, where this argument has been carried out for ux > 0 on
bounded domains. However, the same argument can be repeated for sign-changing functions
ur on R?  The main difference is that the bubbles W; arising from the blow-up argument
are not necessarily positive solutions of . We briefly sketch the argument for the reader’s
convenience.

Step 1. Sequential Bubbling. By scaling and translational invariance, we can assume that
pr = 1 and yi = 0. Denote the set of blowup points for the sequence

S = {z e R?: lim lim inf

/ g [P de > &),
r—=0 k=00 JB(zr)NB(0,C)

where we will fix the constant C' > 0 later and £ = &(n) > 0 is a positive constant that appears in
the e-regularity Theorem 2.1 proved in [Dul3|, which says that |’ B(

o) |uPT1 < e(n) implies that
fB(O,J) |Vul? < C for small 6 € (0,1) and some constant Cy > 0. Since supyey [ga |Vug|* < oo,
by choosing choose r > 0 small enough such that B(x% r) N B(z?,r) = ) for i # j, a standard
covering argument implies that S = {z!,...,2"V} for some finite N € N, and 2' € R? for
1 < i < N. We can choose C' in the definition of & small enough such that S consists of
singleton, i.e., S = {x!}.

Step 1.1. Extracting the first bubble. Fix x € B(z!,r) N B(0,C) and let ry := r(z) be the
unique radius depending on x such that

/ lup [P de = =
B(z,r)NB(0,0) 2

Let z} € B(z!,r) N B(0,C) be the point where ry(z) attains its minimum. Then define A} =
rk(m}c) Thus we have a blowup sequence, )\,i — 0 and a:,lC — 2! as k — oo such that

p+lq.. €
/ . |ug| dx—§.
B(xk’)‘k)
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Re-scaling the function uy,
i (x) = (W)Y P Dup (N + )

and using the e-regularity proved in Theorem 2.1 in [Dul3| we see that since

2
Ay, + |t |P g, = (AL 7T (A, + |ug [P ug),
the sequence @iy, — Wi in H]} (RY) where Wy solves (L.4) either on R? or RY depending on

whether x} lies in the interior of the domain B(z!,r) N B(0,C) or on its boundary. The latter
can be ruled out by showing

Ak
dist(z},, 0B(0,C))

—0, k>

1
which can be done by a contradiction argument, that involves assuming m —cE
k>’ )
(0,00], k — oo and showing that this gives rise to a solution of (1.4)) on the half-space which is
known to be trivial by Pohozaev’s identity. For more details, see page. 162, Section 3 in [Dul3]
or the proof of Proposition 2.1 in [Str84].

Step 1.2. Consider the re-normalized sequence

If vy, converges (up to subsequence) strongly to us in H'(B(z1,7) N B(0,C)) then we are done.
Otherwise, as in Step 1.1, we can find scales )\i — 0 and centers a:i — 2! such that

i
[ =% (2.28)
B(z3,A%)

for some constant 0 < &; < &. We first claim that
A |z — =i

1 1 2

A AL+ AL

since otherwise there exists some constant M > 0 such that

— 00, as k — oo,

1 2
)‘j ‘xk - xk'
1 1 2
AL AL+ AL
This, in turn, would imply that

/ g [PTda < / iy, — WA |PHda < / |, — Wi |PTlda — 0
B(x2,22) B((z2—a1)/AL, 22 /A1) B(0,M)

as k — oo which contradicts the energy concentration in (2.28). The next subtle point here is
to show that no energy is lost between the neck-region connecting the new bubble W5 and the
previous bubble Wj. This has been done in Section 4 [Dul3| and therefore at the end of this
step, we get

<M, ask— oo

1 2
we — (AT <$ 1xk) — ()T (m ka> —0
Ak Ak
strongly in H'(B(z', LAL) N B(z!', LA?)) for any L > 0.
Step 1.3. Iterate and conclude. One can then iterate this process finitely many times to extract
the bubble tree as desired with asymptotically orthogonal parameters as in the second display
in .

Step 2. Convergence results. The existence of the weak limit in (2.25)) follows from the fact
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that uy, is a bounded sequence of H' functions. The strong convergence in Wlicz away from the
blowup points follows from the e-regularity result from Theorem 2.1 in [Dul3|. Thus us is a
smooth stationary solution of away from a finite set of points. Then the standard removable
singularity theorem, see for instance [CGS89, Lemma 2.1], implies that u is a smooth solution
of on R The strong convergence in follows from the definition of the blow-up
parameters (x},A},) and e-regularity from Theorem 2.1 in [Dul3].

Step 3. Energy almost-quantization. The bubble tree convergence and the no-neck property
established in Section 4 of [Dul3] imply the energy identity

lim E (0,R E(W.
Jim E(u; B0, Ry.pr.)) Z

Since E[W;] > E, and we know that

k—o0

Furthermore Z;nzl E (W) < Cy since the sequence uy, has finite energy. Therefore, we can find

an integer between m and an integer less than or equal to Cy/F, such that, up to passing to a
subsequence, there exists a non-negative integer K > m satisfying

klim E(uk;B(O,Rk)) € [KE*, (K + I)E*)
—00
as desired. OJ

3. ANALYSIS OF COLLISION INTERVALS

For convenience, in this section, we let u(t) be a solution of , with initial data ug € H*
defined on the maximal time interval I, = [0,7) where T} < oo in the finite time blow-up
case and T, = oo in the global case. We will also assume that C" = supc(o 1, ) E(u(t)) < oo.
Let 0 < 79 < 1 (in particular 79 < 1/C") such that Lemma holds. We fix this choice of
70 and drop the subscript 7o from d,, and J,, and from the notation for scale and center of a
stationary solution W, in particular A(W) = A(W;~p) and a(W) = a(W;~p). Our goal in this
section is to introduce the notion of collision intervals and show that if Theorem fails, then
these intervals have a nontrivial length.

Definition 3.1 (Collision Interval). Let K € N be the smallest number with the following
properties. There exist sequences of centers and scales (4, pn,en) € R? x (0, 00)?, sequences
of times oy, 7, € (0,74) and small (but fixed) n > 0, satisfying ¢, — 0, 0 < 0, < 7, < T},
On, Tn — T4, such that

(1) 6(w(on); B(Yns pn)) < &n;
(; 6 (u(n); B(yn, pn)) = 15

(3) the interval I, := [0, 7] satisfies |I,,| < enp2;

(4) limy, 00 E(u(0p); B(Yn, pn)) € [KEs, (K +1)E,).
Then intervals [0, 7,] are called collision intervals associated to the energy level K and the pa-
rameters (Y, pn,En, 7). We can conveniently package this information in the following notation
[UTN Tn] € CK(yn7 Prny En, 77)

Remark 3.2. By Definition and item (1) in Definition we can associate to each
sequence of collision intervals [0y, 7n] € Ck(Yn, pn,en,n) a sequence (&,,v,) € (0,00)% with
lim,,—s 00 (g—z + l’j—Z) = 0 such that

lim E(u(cyn); B(Yn, 2vn) \ B(yn,271€,)) = 0. (3.1)

n—o0
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Using item (3) in Definition also allows to assume that

In| = 70 — 00 < &7 (3.2)
Using Lemma with (3.1) and (3.2), we get
lim  sup E(u(t); B(yn,vn) \ Byn, &) = 0.
Jim s B0 Bl 1)\ Bl ) 5.3

The same argument works if we either enlarge §, or shrink v, in the sense that we can replace
(&n,vn) by (&n, ) where &, < &, < pn K Uy K V.

Lemma 3.3 (Existence of K > 1). If Theorem 1s false, then K is well-defined with K > 1.

Proof. Assume that Theorem is false. Then there exist n > 0, p, € (0,00) where p, <
VT —t, when T < oo and p, < +/t, when Ty = co and sequences a;,, — 0 and 3, — oo such
that for all n € N we have

0(u(tn); B(Yn, pn)) > m, nlgroloE(u(Tn)v B(Yn, Bupn) \ B(Yn, anpn)) = 0.

The existence of the sequences «, and f3, follows from Lemma or Lemma when
Pn =Ty — Ty OT pp = \/Tp.

Next, we can find sequences o, and 7, such that o, < 7, op, Tn — T, |[on, Tn]| < p2 and
. 2 2
Jim py[|Gu(on)|72 = 0

To see this, assume to the contrary. Then there exist constants ¢,cy > 0 such that up to a
subsequence we have

prlldeu(t) 72 = co,

for all t € [r, — cp?,7,]. However, this yields a contradiction since u(t) has finite energy and
therefore by the energy identity (|1.3]) we have

oo>/ /|(9tu |dxdt>2/ /|8tu |dxdt>002/ pndt = oo
R4 Tn—cp3 JRE —cp?

Using (2.7), with t; = o,, t2 = 7, cut-off function ¢ € C°(B(yn, fnpn) \ BYn, anpyn)) and
showing that the error terms vanish as in the proof of Lemma [2.10] we get

lim E(w(0y); B(Yn, 27" Brpn) \ B(Yn, 200pn)) = 0. (3.4)

n—oo

Applying the sequential bubbling Theorem to u(oy,), we obtain a bubble tree decomposi-
tion ([2.24)) along some subsequence of o, and for some sequence R,, — co. Since energy vanishes
in the neck region (3.4), we see that

lim §(u(on); B(Yn, pn)) = 0.

n—o0

By Lemma we can find an integer K > 0 such that
lim B(u(on); By pu)) € [K Bey (K + 1)E.).
n—oo

Thus, we have verified all the items in the Definition for the interval [0, 7,,], which shows
that K is well defined and that K > 0.

To see that K > 1, we argue by contradiction. Suppose K = 0. Let &,, v, be sequences as in
Remark Then, since K = 0, we get that lim,, o E(u(00); B(Yn, pn)) < Esx. This implies
that u(op) cannot be a close to any multi-bubble configuration and therefore by item (1) in
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Definition we get that lim, o E(u(0y); B(Yn, pn)) = 0. Using Lemma and (3.4) we
get that

E(u(70); B(Yn, pn)) = 0n(1),
which contradicts item (2) in Definition Thus K > 1. O

For the remainder of this section, assume that Theorem is false. We will show that this
implies a nontrivial lower bound on the length of the collision intervals. Let K > 1 be as in

Lemma and [0y, 7] € Cx (Yn, Py En, M), where
yn € R p, € (0,00),6p, >0, >0,0< 0, <7 <Th,0n = Ty, 1 = T4

are parameters that satisfy the requirements of Definition [3.1] We first prove a very general
lower bound on the size of the intervals where the solution is initially close and later far from a
multi-bubble configuration. We will call these bad intervals.

Lemma 3.4 (Lower bound on the length of bad intervals). There exists ng > 0 such that for
all n € (0,m0), there exist constants €, co > 0 such the following holds; let (o, 7] C [0y, Ts] be any
subset such that

0(u(o); B(yns pn)) <&, 6(u(7); B(Yn,pn)) = 1,

let W = (W1,...,War) be any collection of non-constant stationary solutions, v = (v,v1,...,vp) €
(0,00)MF1 &= (£,&,...,60) € (0,00)M+L any admissible vectors in the sense of Definition|1.4
such that,

e < d(u(o), W(W); B(yn, pn); 7,€) < 2.
Then

2

T—02>c¢ je{IR?i{M} A(Wj)=.
Remark 3.5 (Proof Sketch). Since the proof of Lemmais quite involved, we give a summary
of the key ideas. As usual, we will argue by contradiction. Thus, there exists a sequence
of intervals [s,,tn] C [0, 7n] such that [[sn,n]] < A2, .- The idea then is to contradict the
minimality of K > 1 since the interval size of the [sy, t,] is too short compared to the scale Ayaxn
implying that the collisions are captured on small balls B(y},, p),) C B(yn, prn) with p), < p,. As
we do not see the large scales Apax, in these small balls B(y),, pl,), we deduce that these small
balls must carry strictly smaller energy in the sense of the last item in Definition which will
contradict the minimality of K.
To make the above argument precise, it will be helpful to organize the bubbles that will arise
when the localized distance d vanishes. To that end, we first distinguish the bubbles based on
the size of their H'-interaction. In particular, if this interaction vanishes, then we say that the
bubbles are asymptotically orthogonal.

Definition 3.6 (Asymptotic Orthogonality of Scales). We say that two triples (W}, ajn, Ajn)
and (Wjr, aj n, Ajr ) are asymptotically orthogonal if

2
lim ()\j,n n )\j’,n 4 ’aj,n — Clj/,n’ ) — 0 (3'5)
n—oo )‘j’,n >\j,n )\j,n)\j’,n ’

where W;, W, are non-zero stationary solutions of , Ajn, Gty € R? are sequences of points,
and Ajn, A\jsn, € (0,00) are sequences of scales. We will use the short hand (Wj, ajn, A\jn) L
(Wi, a0 3, Ajr ) if the two triples are asymptotically orthogonal. See Proposition B.2 in [FG20]
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to understand the connection between (3.5) and the integral interaction between the bubbles
W; and Wj, in the case when W;, W, > 0.

Using the above notion of asymptotic orthogonality, we can organize a family of bubbles into a
tree-like structure.

Definition 3.7 (Bubble Tree). Given two collections of stationary solutions h; = {W,,}°2; and
ho = {Wn}%ozl, then h1 < bo iff

i%n; — o0 and 3C > 0 such that B(a(Wn), A(Wa)) C B(a(W,), CA(W,,)) for all n > 1.

Then we say that by is the parent and bs is its child. We will also allow for equality in the
above relation by using the notation h; < bhy. Given M € N consider the collection {h1,...,H}
where b; = {W},;}72, and W} ; are stationary solutions. We define a root element h; as an
element that is not a child of any parent b, for j' € {1,..., M}. We define the collection of all
root-indices as

R:={je{l,...,M}|b;is aroot }.

Finally, to each root h; we can define the bubble tree as the following collection 7 (j) := {h; |
by < b;} and D(j) as the set of all maximal elements (with respect to the partial order <) of
the pruned tree 7(j) \ {h;}.

Proof of Lemma([3.4 Assume that Lemma [3.4] does not hold. Then there exist a sequence of
intervals [s,,,t,] C [0y, 7o) such that

Jim §(u(sn); B(yn, pn)) = 0, Tim 8(u(tn); B(yn, pn)) > 0, (3.6)

a sequence of integers M, > 0, sequences of M,-bubble configurations W(Wn), where Wn =

Win, ..., W, ) and sequences of vectors v, = (Vp,Vin,-..,VM,n) € (0, 00)Mntl & =
(é.na él,na e 7£Mn,n) € (07 OO)MH+1 such that

lim d(u(sn), W(Wa); B(Yn, pu); 7, €a) = 0, (3.7)

and the largest scale Amax,n 1= maxj—1,_.a, AN(Wj ) satisfies (¢, — sn)1/2 < Amax,n-

We can assume that M,, = M is a fixed integer by possibly passing to a subsequence. Consider
the collection {b1,..., b} where h; = {W,,}>2, for j € {1,..., M}. Then construct a bubble
tree as in Definition By definition, for any j,j’ € R we can find a sequence En — 00 such
up to a subsequence we have

B(a(Wj’n), 4Rn)\(Wj’n)) N B(a(ijﬁn), 4Rn)\(Wj/’n)) =0
for any sequence R,, < R, where recall that a(Wjn), A\(Wjn) denote the center and the scale of

the stationary solution Wj,,. Then the decay estimate [2.2] implies that for any j € R and any
sequence R,, — oo we have

lim E(W,,; R\ B(a(W;,); 4 ' RA(W;n))) = 0,

n—oo
which in turn combined with (3.7) yields
nlggo E(U(Sn)§ B(ym pn) \ UJGRB(G(Wj,n)7 471Rn)‘(Wj,n))) =0. (3.8)

Next, applying Theorem to the sequence of stationary solutions Wj, and passing to a
joint subsequence, we find a sequence M; > 0 of non-negative integers, a sequence R, < R,

with 1 < R, < §n)\;11m7n, stationary solutions Wj; o, non-zero stationary solutions W;x, scales
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Ajpn < AWjy) and points pjrn, € B(a(Wj,),CA(W;,,)) for each j and k € {1,...,M;},

satisfying (2:25), (2:26), and

M;
lim E(W - ij(. ) kz ( pjkn)»B(a(m/j,n)ARn/\(ij)))

n—oo j n ],k n
| u N (3.9)
n '\n Pjkn — kn
+ Ajk Ajw, + 15k, Js —0.
Z A Ag k,n Aj,k,nAj,k’,n ) Z dlSt(pj k.ns aB( ( ) C)‘(W ))

kAk! 7,k n

Here C' > 0 is some finite constant, and R, is a sequence, to be fixed below, such that 1 < R,, <
R,. To differentiate the weak limits Wj o (which could be trivial) with the stationary solutions
W; . we will call W; o as body maps following the convention used in the harmonic map heat
flow literature. Define the set of indices

AITl xX,n
Tmax = {j e{l,...,.M}| C’_ )\(VIB/L . < C}, for each n for some C; > 1}
and let K be the smallest natural number such that
Z E(W;p) € [KoE:, (Ko + 1)Ey). (3.10)
jejmax

Then consider the following two cases.

Case 1: First, suppose that Ko = K. Then Jmax = R = {1,..., M} and M; = 0. The idea is
that if one of the above conditions does not hold, then there exists a bubble which will cost at
least F, amount of energy. More concretely, using

KE, < Z E(W;o) < ZE(WJ}O)

JE€Tmax JER
M M Mj
<2 EOMi0)+ 3.
j=1 j=1 k=1
= lim E(u(sy); B(Yn, pn)) < (K +1)E..
n—o0

From the above expression it is clear that if jo € R\ Jmax then E(Wjy0) > E. which contradicts
limy, 00 E(u(8n); B(Yn, pn)) < (K + 1)E,. Therefore Jmax = R. By the same argument R =
{1,...,M} and M; =0 for each j € {1,..., M}. Therefore for each j € {1,..., M}

= a(Wjn)
Jim BV = Wao (55 ) B@Win)s BaX(Wia))) = 0.
Fix a sequence R,, < R, such that for each j € {1,..., M} we have 4 Ry Amax,n < Minjegi . Ay Vin-
Then since A(Wj,,) = Amax,n for each j € {1,..., M} we can use (3.7)) to get that
- = a(Win)
i, B(wlon) = Wio (S 5 )i BaWin) AR ) = 0.

Now we can use Lemma, with (¢, — sn)l/ ?x Amax,n to propagate these estimates to time
t, for each j € {1,..., M} to get

nh—>nolo E(u(tn) — Wj,O (W) ; B(a(vvj,n)a 4Rn)\max,n))) =0. (3'11)
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The same reasoning applied to (3.8]) yields

A —a(Wjn)
TimE(u(ty) - Wj,o(W)  B(Yns pn) \ UL B(a(W;n); Bodmaxn))) = 0. (3.12)
Using (3.11)), (3.12), pairwise disjointness of distinct balls B(a(W; ), RaA(Wjx)), asymptotic
orthogonality of the triples (W; o, a(W; ), A(W;,)), and Remark we get that

Tim (u(tn); B(yn: pn)) = 0,

which contradicts the second equation in .
Case 2: Next, consider the case Ky < K. We show that this case leads to a contradiction with
the minimality of K. Again we will need R,, — oo such that 4R, Amax,n < min{v;}jc7... and
R, < R,. We split the argument into several steps.
Step 1. We first show the existence of an integer L > 1, sequences {:Egm}ZL:l with z¢, €
B(yn,&,) for each n € N and each ¢ € {1,...,L}, and a sequence r,, satisfying the following
properties

o (tn - Sn)1/2 L rp K )\max,n;

e the balls B(xy,,r,) are pairwise disjoint for £ € {1,..., L} with

lim [2en — 2o - 50 (3.13)
n—o00 Tn
for £ #£ ¢/,
e on the union of all such balls, we capture the missing energy

Jim E(u(sn); Uf_1 B(ze0, 1)) € [(K — Ko)E., (K — Ko + 1)E,), (3.14)
with vanishing energy in the neck region, i.e., there exist sequences a,, — 0,5, — o0

such that

L

lim Z E(u(sn); B(em, Bnrn) \ B(zgpn, anrn))) = 0; (3.15)

e and a sequence En such that

n K gn < Pns B($€,n> 6nrn) C B(ym gn) (316)

Step 1.1. We first construct the sequence of points P := {{zy,,}% ,} for some integer L > 1.
The idea will be to do this inductively. Define our initial set Py to consist of all points such that
[ ] CL(W]’n) Wlth ] € R \ jma)m
o a(W;,) with b; € D(jo) for some jo € Tmax,n, Where recall that D(jo) is the collection
of maximal elements in the pruned tree 7 (jo) \ bj,, and

e sequences pj, k. associated to stationary solutions ijk('zpjo’k’”

that are
— asymptotically orthogonal to every bubble in the collection h; € D(jo),
— and not children of any b; € D(jo).

P ) for some jy € Jmax

Enumerate the set of all such points, Py = {{ys,}5_,} for some integer L' > 1. Observe that
after possibly passing to a subsequence we have

(tn . Sn)1/2

: € (0,00
n—00 dlSt(yZ,nv yZ’,n) [ ]
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for any ¢ # ¢ € {1,...,L'}. We add yj, », to our final collection P if

M_O vee {1 L)\ ¢
n—oo dist(Yeg,n, Yon) Y o
Otherwise, denote
(tn _ 5n)1/2
D(lp) == {lp} U lim ———— > 0.
( O) { 0} { nggo dlSt(ng n> Yo n) ~ }
Note that D(¢1) = D({2) iff ¢o € D(¢1). Define the barycenter

L Yen
Ton = D B(to)|

0eB(Lo)

We will include xy,,, € P. This finishes the construction of the set P = {{a:gm}éL:l} for some
integer L > 1 such that {x/,} C B(yn,&,) forany 1 < ¢ < L.
Step 1.2. We choose the scale r,, such that

(tn — )2 < 1y < Amax,ns MAX{ R AWjn), Vjnt < 1 ny Vi & Tmax
maX(Aj,k,nyé—j,n) <L Tp, V(], k) € jmax X {17 sy Mj}

and such that the balls B(xy,, ry,) satisfy (3.13). Note that B(x(,,ry) is asymptotically disjoint
from B(a(Wjyn), RnAmax,n) for any jo € jmax since Apiy nla(Wign) — a(Wjp)| — oo for all
J € R\ Jmax and jo € Jmax and we choose the points xy, to be coming from the centers a(W) ;)
for j € R\ Jmax. This concludes the construction of the centers {zy,} and scales r,.

Step 1.3. It remains to verify , , and . The construction of the sequence én
such that holds follows from the construction of the scales r,,. For the other two estimates,
observe that for any jo € Jmax, by definition {xgyn}szl, the limit in , and the choice of r,
we have

lim E(“(Sn) - Wj0,03 B(CL(Wjo,n), 4RnAmax,n) \ U£:13($57n, Tn))) =0, (317)

n—oo

where we define VNijo = Wjy.0 (#) Since 7, < Amax,n, the stationary solution

Jim EOVso 03U Bz ) = 0. (3.18)
Equations (3.18)), (3.17)), (3.10), and (3.8)) imply that
Jim E(u(sn); Blyn, on) \ Ui Bloenmn) = D EWjo) € Ko, (Ko + DE). (3 1)
]Ejmax
Then,

lim E(u(sn); Uiy B(@gn, 7)) = Mm E(u(sn); B(yn, pa)) = Y EWjo)

n—oo n—oo
je«Znax
€ (K — Ko — 1)E,, (K — Ko + 1)B,).

Since each bubble contributes atleast B, amount of energy limy, oo E(u(8,); UL B(x41,740))) €
(K — Ko — 1)Ey, (K — Ko)Ey). Thus we must have that lim, .o E(u(s,); UL B(zen, 1)) €
(K —Ko)E;, (K—Ko+1)E,) verifying (3.14)). The condition follows from the construction
of the set P and the choice of r,,.

Step 2. The key point of constructing the collection of balls, B(xy,,r,) for 1 < ¢ < L, is that
for large enough n, the function u(t,) deviates from a multi-bubble configuration on at least one
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of these balls. In other words, we will now show that there exists 1 < £; < L and 7; > 0 such
that (after possibly passing to a subsequence)

6(u(tn); B(mfl,m Tn)) =M. (3.20)
If not then for all £ € {1,..., L} we have
Jim §(u(tn); B(xen,m)) = 0. (3.21)

We will argue that this implies that
lim 5(u(tn); B(ynv pn)) =0,

n—0o0

which contradicts (3.6). First, since (¢, — sn)l/ 2 <« 1, we can use Lemma m to propa-

gate (3.15)), (3.14), (3.19), and (3.17)) up to time ¢, to get

nli_}rn E(u(ty); Uf_1 B(xgn,m0)) € [K1E., (K1 + 1)EL),

nh_{roloE_‘(u(tn)’ B(yna Pn) \ Ul%:lB(xe,nv Tn)) € [KOE*’ (KO + 1)E*)’ and
ILm E(u(t,) — Wjo,o; B(a(Wjyn)s RnAmaxn) \ UleB(a:g,n, rn)) =0, (3.22)

where K1 = K — Koy, jo € Jmax. Using again Lemma (3.8), the construction of the
sequences {x¢,} and r, we have

lim E(U(tn)§ B(Yns pn) \ (UjeTmax B(@(Wjn), BnAmax,n) U UszlB(xf,nv n))) = 0. (3.23)

From , after passing to a Jomt subsequence in n, for each ¢ € {1,...,L} we can find an
integer Mg > 0, a sequence of Mg—bubble configurations W(Wgn) and sequences of vectors

Vf,n (Vﬁnvyflny ) EM ) and gfn = (éfnagﬁlna-”aggM ) so that
lim d(u(tn)v W(Wf,n); B(:Ef,ny rn); ljé,na Eﬁ,n) =0. (324)
n—00

Here note that W(ng) = ij:el Wi jn for some collection of stationary solutions Wy ;,,. Con-
sider collection of maps

17 L M
Wn ((Wé,] n)f 1 ] 1 (I/I/j’ozn)jEJmax)

where Wj o, =W, 0(%) are the weak limits obtained by applying the compactness The-

orem [2.15[ for each j € Jmax and let W(Wn) denote the sum of all the maps in the above
collection. For each j € Jmax set v}, := Ry, &n = ry and

P 1= (v (Ven) ey, Vi) je s = (Enn (Em)Ers (€5m)je T

Then we claim that

—

i d(u(tn), W 0): By pi); P, &) = 0. (3.25)

This follows from ([3.24)), asymptotic orthogonality of distinct triples (Wo k. n, a(Wekn), AWekn))
and (W i n, a(We gt n)s A\(Wer i ) for (€, k) # (¢, k") since B(xgy,r,) are mutually disjoint,
asymptotic orthogonality of triples

e a(Wjo,n)

W, aWegn), \Wekn)) and (Wi o
( 70 )‘<Wj0,n)

) a(Wion) A(Win))
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for any 1 </ < L and jo € Jmax since 1, < Apax,n and
lim E(W;y0; B(x00,70))) =0, Yjo € Jmax, YL E{1,...,L},

lim E(Wekn; B(yn, pn) \ B(@gn,ma)) =0, VL€ {L,..., L}, ke {L,... , My}
These observations, together with (3.22]), (3.23)), and Remark applied with scale &,, yields (3.25).

This establishes (3.20)).
Step 3. As a consequence of (3.20) we will show that there exists 7,, < t,, such that

to G <2 andlim 7 T(u(@) 12 = 0. (3.26)

This follows from the same contradiction argument as in the Proof of Lemma Applying
Theorem [2.15] and possibly passing to a subsequence, we have a bubble tree decomposition as

in (2.24) for some sequence R,, — oco. The estimate (3.15)) can be propagated to time &, using
(2.7) and the argument in Lemma to get

lim E(u(0n); B(Ten, Bnrn/2) \ B(en, 2anr,)) = 0. (3.27)
n—oo
Therefore, all the stationary solutions at scale r,, in Theorem [2.15] vanish, which implies that
Jim d(u(an); B(zey 0, 70)) = 0. (3.28)
By (2.27)) we can find an integer K’ > 0 so that,
E(u(5,); B(Teyny7n))) € [K'Ey, (K' +1)E,) as n — oo. (3.29)

The estimate (3.20) implies that K’ > 1 since t,, — &, < 72.

Step 4. We will now show that K’ < K and that [oy,t,] € Cx/(%¢, n, Tns€1,n, M) for some
sequence €1, — 0 which will contradict the minimality of K.

Step 4.1. We first show that K/ < K. When Ky > 0, K/ < K since some energy lives on
the scale comparable to the maximum scale Apax,, Which is asymptotically larger than r,. On
the other hand, suppose Ky = 0. If K’ = K then this implies that the energy in B(yn, pn)
is successfully captured by the balls B(x, n,7,). However, since there is at least one index
Jo attaining the maximum scale, i.e., A(Wj, ) = Amax,n, and 7, < Amax,n = AM(Wj.n), by the

Definition of the scale we see that at least F, /2 energy must live outside the scale B(x¢, ,, )
which is a contradiction to (3.27). Thus K’ < K.
Step 4.2. Next, we check the properties of the Deﬁnition Item (1) follows from ([3.28)), item

(2) follows from (3.20), item (3) follows from and item (4) follows from (3.29)). Thus,
[On,tn] € Crr (T ns Ty 1,00 M1)

which is a contradiction to the minimality of K, and therefore the proof is complete. ([l

By a standard continuity argument, we get the following Corollary of the above Lemma.

Corollary 3.8. Let g > 0 be as in Lemma n € (0,m0], and [on, ] € Ck(Yn, Pr,En,s1N).
Then, there exist ¢ € (0,n), co > 0 ng € N, and s, € (o, T,) such that for all n > ng, the
following conclusions hold. First,

6(u(sn); B(ym pn)) =&

Moreover, for each n > ngy let M, € N, and W(Wn), where W, = (Wi,...Wa,) be any
sequence of My-bubble configurations, and let Uy, = (Un, Vi -, VMn),&n = (&ns&ins -+, EMm) €
(0, 00)M+1 be any admissible sequences in the sense of Deﬁnition such that

e < d(u(sn), W(Wn); B(Uns pn), In, &n) < 2¢
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for each n. Define

Amax,n = Amax(sn) = j=1il,la,}§\/fn )\(ijn)

Then, s, + COAmax(Sn)Q < 7, and,
(u(t); B(yn, pn)) >, Yt € [sn,sn+ colmax(sn)?]-
Proof. From Lemma fix ,m9 > 0. Then we can define s, by the first exit time
Sp = inf{t € [on, ] | (u(T); B(yn, prn)) > €, for all T € [t, 7,]}.

This is well-defined for all sufficiently large n. Then by continuity, §(u(sn); B(yn,pn)) = €.
Setting Amax(sn) and using Lemma we see that for n large enough we have

Sn + CO)\max(Sn)2 < Ty,

which completes the proof. [l

4. CONCLUSION
In this section, we will prove Theorem [I.8]and use it to establish Theorem [I.6]and Corollary

Proof of Theorem [I.8, The proof proceeds by a contradiction argument that we break into sev-
eral steps.

Step 1. Setting up the contradiction hypothesis. If Theorem fails then there exists a
non-negative integer K > 1, and parameters

Un € Rda Pn > Oa O<op, < < T+, [O'naTn] S CK(yn,pn,ffm??),

with €, = 0, op, 7, — T4 such that

’Tn — Op ’ < Enpi, 5(U(Un)§B(ympn)) < én, 5(U(Tn)33(ympn)) >,

and E(u(on); B(yn, pn)) € [KEs, (K 4+ 1)Ey).
Step 2. Picking the first exit time inside each collision interval. By Corollary [3.8] there exist
e € (0,7m), ¢o > 0, and times

5n € (On, Tn), 6(U(Sn)§B(yn7pn)) =g

such that for s, + coA\2 < 7, and for all ¢ € [s,,, s, + co\2 | we have

max,n max,n

6(“(75); B(ym pn)) >e€ (4.1)
where Amaxn = Amax(Sn)-
Step 3. A quantitative lower bound on the [|d;u(t)[|7.. We claim that there exists a constant
c1 > 0 such that for n large enough we have,

>\12nax,n H@tu(t)H%Q > c1, V€ [8n,8n + oMo n)- (4.2)

= max,n
We will prove this by contradiction.

Step 3.1. Setting up the contradiction hypothesis. If (4.2)) does not hold then there exists a

sequence of times t,, € [sp, S + co)\?nax’n] such that

Amax,n [|Ou(tn)ll L2 = 0

as n — 00. Using Theorem we deduce that (up to a subsequence) there exists Ry, (z,) — 0o
such that for any sequence 1 < R,, < R, (z,) we have

nh—>ngo 6(u(tn); B(*Iny Rn)\max,n)) =0. (43)
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We will construct a set of points x¢,, for 1 < ¢ < L for some integer L > 1 and use (4.3) to
conclude that

71113010 5(u(tn);B(yn,pn)) =0. (4.4)

which will contradict the lower bound & (u(ty,); B(yn, pn)) > €.
Step 3.2. Construction of the sequence {a:g’n}f:l. We claim that there exist an integer L > 1,

points {xs,} for 1 </ < L, R > 2 and a sequence 1 < R, < AL, &, such that

max,n
_ . E,
E(U(Sn); B(yn> pn) \ UleB(xf,ny R)\max,n)) S T, (45)
B(2¢p, Rndmaxn) N B(ze p, Rodmaxn) = 0,90 # 0 € {1,... L}, (4.6)

where K is defined in Step 1, &, comes from the multi-bubble configuration obtained at t = s,
i.e., we consider multi-bubble configurations W (WW,,) = Z]]\il W, n comprising of some fixed M
number of bubbles, after possibly passing to a subsequence because our solution has finite energy
with parameters 7, and 5_;1 such that

e < d(u(sn), W(Wp): B(Yn, pn); U, &) < 2e. (4.7)

We define &,,v, as the first components of the vectors 5_;1, Uy, respectively. Arguing as in Re-
mark we deduce that (3.2) and (B.3) hold. We will construct the sequence {zp,}% | for
some integer L € N as follows. First up, to a subsequence we have that

‘CL(ij) B a(Wk,n)|

L = lim 3
max,n

n—o0

€[0,00], Vj#ke{l,...,M}.

Given an index j € {1,..., M} we collect all other indices for which Lj; is finite, i.e.,
L(j) == {j} U {k e{l,...,M}: Ly < oo}.

Observe that for j # k, either £(j) = L(k) or L(j) N L(k) = 0. Define the barycenter

a(Wi,n)
e 2 RG]
i€L(j)

Then our desired sequence of points {z,,}%, is simply a collection of points {x £(j)n) for each
distinct index set £(j) with L < M.

Step 3.3 Verification of (£.5) and (4.6). Using Lemma [2.2] (4.7), and the definitions of d and
Amax,n there exists Ry > 1 such that for n > 1 we have

M —
E
B (u(0); B o) \ | Bla(yn)s Bidmaxn) ) < =
j=1
where K is defined in Step 1. Then, the definition of the points zy,, yields a sequence 1 < R, <
Anl such that (4.6]) holds.

max,n>Sn

Step 4. Vanishing of the distance in (4.4). Using the collection {zs,}}_ as the centers in (4.3)
consider sequences Ry, such that for any R, < Ry, we have

lim 8(u(tn); B(€gn, Rodmaxn)) =0, £€{1,...,L}. (4.8)
n—oQ
This in particular implies that there exists an integer K, > 0 such that
nh~>nolo E(u(tn); B(xé,nv Rn)\max,n)) € [KZE*y (KZ + 1)E*)
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for each ¢ € {1,...,L}. Now consider &, such that &, < &, < pn. Then, for each ¢ € {1,...,L}
we have

)\max n

lim
n—eo dlSt(l’g ) aB(ynv gn))

=0, (4.9)

as Trn € B(yn,&n) and Amax,n < &n. Therefore, there exists a sequence R,, < min{ﬁn, {Rg’n}é':l}

such that B(z/y, RnAmaxn) C B(yn,&n) for each £ € {1,...,L}. Thus
_ E,
B((s0): By on) \ U Botms Rudman/2)) < 5

Propagating the above estimate using Lemma [2.10] we get

w‘tijl

lim E(u(tn)§ B(ynv pn) \ UZL:1B(x€,na Rn)\max,n)) < (4'10)

n—o0

Using (4.3) for points in Qy, 1, := B(yn, pn) \ Ug*:lB(:rg,n, Ry Amax,n) we deduce that u(t,,) cannot
be close to a single bubble due to (4.10) and therefore

nlgrolo E(u(ty); Qpr) = 0.

We also know that (4.8) and the definition of the sequence R,, implies
nlggozcs B(24., RnAmaxn)) = 0. (4.11)

Moreover, the balls B(x¢,, RyAmax,n) are disjoint by (4.6) and the choice of R,, < én. Com-
bining (4.11)), (4.9)), the disjointness of the balls B(x¢ ., RnAmax,n), (4.10), and Remark we

conclude that

lim &(u(tn); B(Yn, pn)) =0,

n—o0

which contradicts (4.1]). Thus (4.2)) holds.
Step 5. Conclusion. By (4.2)) we have

5n+CO)\max(5n)
[ 1wl >/ Ot 32
0
5n+00)\m1x(5n)
> Z/ max<5n)72 dt > cocq Z 1=o00
n
which contradicts (|1.3]). Thus, we have proved Theorem O

Proof of Theorem [1.6. We treat the ﬁniteftime blow—up case T < oo; the global case is analo-
gous. Throughout we write p(t) := T} —

Step 1. Reduction to small balls near the bubbhng points. Theorem [2.8| furnishes the existence
of the set {z1,...,21} C R? and a weak limit u, € H'. Choosing 0 < py < 1 so that the balls
B(xy,2pg) are d15301nt Theorem [2.8 implies

lim E(u(t) — us; RN\UL B(zg,p0)) =0 and  lim E(u(t) — us; B(:cg,po)\B(a;g,p(t))) =0

t—T t—T4

for 1 < ¢ < L. Since u, € H', we have E(us; Bz, p(t))) — 0 as t — T4 Hence it suffices to
study w(t) inside the shrinking balls B(zy, p(t)).
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Step 2. Bubbling at one blowup point. Fix one bubbling point and denote it by y := x,.
Theorem gives

lim &(u(t); B(y, p(t))) = 0.

t—T

Let t,, — T+ be an arbitrary sequence of times. Then there exist

e an integer My > 1, which is also finite since u(t) is a finite energy solution;

e W(W,) = Z ' Wjn, where W, are stationary solutions;

e and scales U, = (Von, Vim,-- -, VM, n) and §n = (&on:&1ns - EMum),
such that . .

d(u(ty), W(Wy),; B(y, p(tn)), Vn,&n) = 0 as n — oo.

Upon passing to a subsequence, we may assume that M, = M for all n.
Step 2.1 Initial bubble tree construction. For every j € {1,..., M} the map W}, is a stationary
solution and therefore applying Theorem [2.15) we get for each fixed j

e an integer M; > 0;

e a weak limit ¥; o;

e non-zero stationary solutions 1, ..., 9,y with center p;r., € B(a(Wjn), \(Wj,)) and
scales Aj i n < AWjip),
such that
UANIRS
im B(w o — 9. (—— W)y  (—Pikn ) _
,,}L{IOlO E<W]7n 19.]70( )\(ijn) ) Z ﬂjvk( A] kn ) B]7 - 07
? k:1 vy
where B; ,, := B(a(Wjn), RaA(Wj,)) for some R,, — oo, where the scales and centers satisfy
/ e — Dt |2\ —1
lim ( 3,k,n j,k N + ’py,k,n Pjk 77’L| > —0.
n=ro0 ,;; Niwn  Asin  Apndign

For convenience denote Aj o, := A(Wjn),Dj0n := a(Wjy) so that in every bubble family indexed
by (j, k) the index k = 0 corresponds to the original scale A\(W;,) and centre a(W ).
Step 3. Refined bubble tree construction. By the construction in the previous step, we have
found a family

{5k Pjikeons Aj,k,n)};;%;]iBMJ
which looks promising, but unfortunately, might not be asymptotically orthogonal. However,
we can follow the same argument as in the proof of Theorem 1 in [JLS25] to construct an
asymptotic orthogonal family (Wj, ajn,Ajn). The idea is to analyze the bubble tree as in the
proof of Lemma Denote R to be set of root indices obtained after partially ordering the
tree h; = {W,,}22, and for each bh;, € R consider the bubble tree T (jo) := {h; =< bj,}. For
some large constant C’ > 0, B(a(W; ), \(W;,)) C B(a(Wj,n), C'’A\(Wj,n)) and therefore the
domain B(a(Wj, ), C'A\(Wj,)) contains all the stationary solutions

M.
U {(05ks Pjkns Mgk biZo-
;€7 (Jo)
We will refine this collection to obtain an asymptotic orthogonal family. To this end, define
K(j, k) = k)}u { (Wi as 0jr i s Mg ) L (Wi, Djkens Aj»k»”)}'
For each reference index jy € R we examine every cluster K(j, k) attached to the preliminary
list of triples (19j7k,pj,k7n,Ajyk7n).
e Case 1: ’lC(j, k‘){ = 1: we keep the lone triple (l(flj,k7pj,k,n,1\j7k7n)-
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e Case 2: |K(j, k)| > 1: discard all triples with first index in K(j, k) and or replace them by
a single triple (Gj,lm Dj ks Aj7k7n), where © ;. is a stationary solution. The construction of
this new bubble 6 ;. ,, uses Theorem [1.6] and Theorem and therefore the argument
from the proof of Theorem 1 in [JLS25| carries over to this setting as well.

Repeating this procedure for every root index jy € R leaves a final family of triples that are
pairwise asymptotically orthogonal and fulfill the conclusions of Theorem O

Proof of Corollary[I.7 Since ug > 0, then by the maximum principle u(t) > 0 for all t € [0,T%).
By |CGS89] all the positive bubbles are classified and are up to scaling and translation of the
form
(d—2)
2

W) = <1+d(lf’_22))_.

Modifying the definition of the localized distance by only considering positive bubbles, one
can repeat the argument in Section [3] proof of Theorem [I.8] and Theorem [I.6] to deduce the
and with the solitons being independent of the sequence of times. The key point in
these lemmas is the application of the Elliptic Compactness Theorem which will produce
positive bubbles given a positive sequence of finite energy functions. Furthermore, since the
energy of positive bubbles is quantized, in item (4) of Definition it suffices to simply redefine
K as follows
lim E(u(on); B(Yn, pn)) = KE.

n—o0

for some integer K > 0. As a result, these modifications allow us to prove the Soliton Resolution

Conjecture for the energy-critical nonlinear heat flow with non-negative initial data. O
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